Area Under the Precision Recall Curve
I have got the following Precision Recall Curve for a classifier I built using AutoML. Most of the Precisio-Recall curves tend to start from (0, 1) go towards (1,0). But mine is the opposite. But I feel like, similar to the ROC curve it is actually good to get a PR curve that goes towards (1,1), is this understanding wrong? If you get a PR curve like this how would you interpret the results? Is it a good model? If it is not a good model why? Do I need to correct my data?
Note:The dataset is for fraud detection so the positive and negative classes are imbalance.
Topic auc class-imbalance classification
Category Data Science