Confusion matrix doesn't display properly
I am trying to plot a confusion matrix
using the Logistic Regression
for a multi-class
dataset.
But the problem is when I plot the confusion matrix
it only plot a confusion matrix
for binary classification.
Here is where I am plotting it.
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
dataframe = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
from sklearn.linear_model import LogisticRegression
LRModel = LogisticRegression(C=100, max_iter=5500)
LRModel.fit(X_train, y_train)
predicted_values_ = LRModel.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, predicted_values_)
misclassified = (y_test != predicted_values_).sum()
misclassified
import seaborn as sn
# plt.figure()
sn.heatmap(cm, annot=True)
plt.xlabel("Predicted")
plt.ylabel("Actual")
And I get this matrix as shown below.
Can someone tell me where I am doing wrong?
This is where I am using Logistic Regression for multi-class scenario
Topic ipython logistic-regression confusion-matrix python
Category Data Science