Dimension Mismatch Error during dot product in Python
I have two matrices user_vecs
and item_vecs
I am trying to take the dot product of the two to build a recommendation engine:
The shape of the two vectors are as follows:
user_vecs.shape
(20051, 20)
item_vecs.shape
(20,1808)
When I take the dot product of the transpose as follows:
a = user_vecs.dot(item_vecs.transpose())
I get the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ipython-input-41-f4cd01978711 in module
---- 1 a = user_vecs.dot(item_vecs.transpose())
C:\ProgramData\Anaconda3\lib\site-packages\scipy\sparse\base.py in dot(self, other)
362
363
-- 364 return self * other
365
366 def power(self, n, dtype=None):
C:\ProgramData\Anaconda3\lib\site-packages\scipy\sparse\base.py in __mul__(self, other)
479 if issparse(other):
480 if self.shape[1] != other.shape[0]:
-- 481 raise ValueError('dimension mismatch')
482 return self._mul_sparse_matrix(other)
483
ValueError: dimension mismatch
I understand that the dimensions of the two matrices are not matching, but the transpose should have fixed that. Why am I still getting this error?
Topic python machine-learning
Category Data Science