H2O deep learning model performance
I am discovering H2O deeplearning and I would like to have your point of view about the performance that's performed my model on classification problem. Do you think my model is overfitting?
dl_fit2 - h2o.deeplearning(x = predictors, y = response,
training_frame = train,
validation_frame = valid,
epochs = 200,
score_validation_samples=10000,
score_duty_cycle=0.025,
activation = "RectifierWithDropout",
hidden = c(80, 10, 80),
hidden_dropout_ratios = c(0.2, 0.2, 0.2),
loss = "CrossEntropy",
rate=0.01,
rate_annealing=2e-6,
adaptive_rate = FALSE,
momentum_start = 0.2,
momentum_ramp = 1e7,
momentum_stable = 0.4,
nesterov_accelerated_gradient = TRUE,
l1 = 1e-5,
l2 = 1e-5,
max_w2=10
)
MSE: 0.009757329
RMSE: 0.09877919
LogLoss: 0.03527449
Mean Per-Class Error: 0.01219048
AUC: 0.9991871
pr_auc: 0.4974259
Gini: 0.9983743
Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
NO YES Error Rate
NO 10022 140 0.013777 =140/10162
YES 109 10170 0.010604 =109/10279
Totals 10131 10310 0.012181 =249/20441
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.367137 0.987906 212
2 max f2 0.178219 0.990603 270
3 max f0point5 0.765904 0.990982 122
4 max accuracy 0.371864 0.987819 210
5 max precision 0.999979 1.000000 0
6 max recall 0.001865 1.000000 387
7 max specificity 0.999979 1.000000 0
8 max absolute_mcc 0.367137 0.975640 212
9 max min_per_class_accuracy 0.385816 0.987256 204
10 max mean_per_class_accuracy 0.371864 0.987812 210
Topic h2o deep-learning
Category Data Science