How do I replace NaN values using group by pivot_table in pandas DataFrame?
I am working on a machine learning practice problem, from https://datahack.analyticsvidhya.com/contest/practice-problem-big-mart-sales-iii/#ProblemStatement
I want to replace the null values in the column 'Item_Weight' and for that I am using the mean values given by a pivot_table where I calculated the mean of 'Item_Weight' and grouping the mean by column 'Item_Identifier' of the dataset.
item_weight_mean = ds.pivot_table(values='Item_Weight',columns='Item_Identifier')
loc2 = ds['Item_Weight'].isnull()
ds.loc[loc2, 'Item_Weight'] = ds.loc[loc2, 'Item_Identifier'].apply(lambda x: item_weight_mean[x])
I am getting an error for the same code.
(key)
- 2902 indexer = self.columns.get_loc(key)
2903 if is_integer(indexer):
2904 indexer = [indexer]
D:\Important Applications\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
2895 return self._engine.get_loc(casted_key)
2896 except KeyError as err:
- 2897 raise KeyError(key) from err
2898
2899 if tolerance is not None:
KeyError: 'FDN52'
How do I remove this error?
Topic data-engineering feature-engineering pandas python machine-learning
Category Data Science