How interpret or what's the meaning of rbm.up results?
I am studying deep learning and the deepnet R package gives me the following example: (rbm.up function Infer hidden units states by visible units)
library(deepnet)
Var1 - c(rep(1, 50), rep(0, 50))
Var2 - c(rep(0, 50), rep(1, 50))
x3 - matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 - rbm.train(x3, 3, numepochs = 20, cd = 10)
v - c(0.2, 0.8)
h - rbm.up(r1, v)
h
The result:
[,1] [,2] [,3]
[1,] 0.5617376 0.4385311 0.5875892
What do these results means?
Topic rbm recommender-system
Category Data Science