How to benchmark own model trained by Yolov5
I trained a model with my dataset for object detection - using 1500 samples. Now I'm not pretty sure how to benchmark my model. What is the procedure before using the model? Are the parameters in the output below reliable? Or should I test my model on another separate dataset?
I want to be sure that my model is good enough before using it.
I got the following results:
wandb: Run history:
wandb: metrics/mAP_0.5 ▁▅▆▆▇▇▇▇▇▇▇▇████████████████████████████
wandb: metrics/mAP_0.5:0.95 ▁▄▅▆▆▆▆▇▇▇▇▇▇▇▇▇▇▇██████████████████████
wandb: metrics/precision ▁▃▅▅▆▆▆▇▇▇▇▇▇▇▇▇▇▇▇█████████████████████
wandb: metrics/recall ▁▅▅▆▆▇▆▆▇▇▇▇▇▇▇▇██▇█████████████████████
wandb: train/box_loss █▅▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/cls_loss █▆▅▄▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/obj_loss █▅▄▄▄▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: val/box_loss █▄▃▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: val/cls_loss █▅▄▃▃▃▃▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: val/obj_loss █▅▄▄▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: x/lr0 ▃██████▇▇▇▇▇▆▆▆▆▆▅▅▅▄▄▄▄▃▃▃▃▂▂▂▂▂▁▁▁▁▁▁▁
wandb: x/lr1 ▃██████▇▇▇▇▇▆▆▆▆▆▅▅▅▄▄▄▄▃▃▃▃▂▂▂▂▂▁▁▁▁▁▁▁
wandb: x/lr2 █▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:
wandb: Run summary:
wandb: metrics/mAP_0.5 0.97796
wandb: metrics/mAP_0.5:0.95 0.83993
wandb: metrics/precision 0.96047
wandb: metrics/recall 0.94034
wandb: train/box_loss 0.01183
wandb: train/cls_loss 0.0021
wandb: train/obj_loss 0.00885
wandb: val/box_loss 0.01047
wandb: val/cls_loss 0.00102
wandb: val/obj_loss 0.00545
wandb: x/lr0 0.001
wandb: x/lr1 0.001
wandb: x/lr2 0.001
wandb:
wandb: Synced 5 WB file(s), 335 media file(s), 1 artifact file(s) and 0 other file(s)
wandb: Synced graceful-surf-7: https://wandb.ai/nae2/train/reports/Untitled-Report--VmlldzoxMzYzMTE2?accessToken=j347bnjzpuwpfl1mah5mr5amf1gltuxdrcziokqebofghod84da2mwkihl13lp8z
wandb: Find logs at: .\wandb\run-20211218_081552-1x05vi2n\logs\debug.log
You can see complete report also here: https://wandb.ai/nae2/train/reports/Untitled-Report--VmlldzoxMzYzMTE2?accessToken=j347bnjzpuwpfl1mah5mr5amf1gltuxdrcziokqebofghod84da2mwkihl13lp8z
Topic yolo computer-vision machine-learning
Category Data Science