How to calculate diameter of clusters for DBSCAN?
I've created several clusters for my task. Now I'd like to know the distance among the far points in each cluster.
# Generate sample data
X = np.loadtxt('C:/1.csv', delimiter=',')
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.8, min_samples=20).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
Topic dbscan scikit-learn clustering machine-learning
Category Data Science