How to make scipy.optimize.basinhopping find the global optimal point
Question
Try to find the global optimal point of the function (reading Python for finance 2nd edition - Chapter 11. Mathematical Tools).
def fm(p):
x, y = p
return (np.sin(x) + 0.05 * x ** 2
+ np.sin(y) + 0.05 * y ** 2)
scipy.optimize.basinhopping says it finds the global minimum.
Find the global minimum of a function using the basin-hopping algorithm
However, it looks it does not find the global optimal point. Why is this and how can make it find the global optimal?
import numpy as np
import scipy.optimize as sco
from pylab import plt, mpl
from mpl_toolkits.mplot3d import Axes3D
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
%matplotlib notebook
x = np.linspace(-10, 10, 50)
y = np.linspace(-10, 10, 50)
X, Y = np.meshgrid(x, y)
Z = fm((X, Y))
optima = sco.basinhopping(
fo,
(-10, 10),
stepsize=0.1
)
# Optimal
optima['x'] = np.append(optima['x'], fm((optima['x'][0], optima['x'][1])))
optima
Result
fun: 3.5447966927667616
lowest_optimization_result: fun: 3.5447966927667616
hess_inv: array([[9.01401735e-01, 1.68119491e-03],
[1.68119491e-03, 2.84089686e+00]])
jac: array([2.98023224e-08, 2.98023224e-08])
message: 'Optimization terminated successfully.'
nfev: 24
nit: 5
njev: 6
status: 0
success: True
x: array([-1.42755175, 9.67888407])
message: ['requested number of basinhopping iterations completed successfully']
minimization_failures: 0
nfev: 2516
nit: 100
njev: 629
x: array([-1.42755175, 9.67888407, 3.54479669])
Plot:
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
# Function
surf = ax.plot_surface(
X, Y, Z,
rstride=2,
cstride=2,
cmap='coolwarm',
linewidth=0.5,
antialiased=True
)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
# Optima
ax.plot(
[optima['x'][0]], [optima['x'][1]], [optima['x'][2]],
color='r', marker='X', markersize=15
)
fig.colorbar(surf, shrink=0.5, aspect=5)
Brute
If used [scipy.optimize.brute][5], it may be able to find near point.
OX = []
OY = []
output = True
def fo(p):
x, y = p
z = np.sin(x) + 0.05 * x ** 2 + np.sin(y) + 0.05 * y ** 2
if output == True:
#print('%8.4f | %8.4f | %8.4f' % (x, y, z))
OX.append(x)
OY.append(y)
return z
optima = sco.brute(
fo,
(
(-10, 10.1, 2), # Step X from -10 to 10.1 by interval 2
(-10, 10.1, 2) # Step Y from -10 to 10.1 by interval 2
),
finish=None
)
OZ = fm((np.array(OX), np.array(OY)))
# Optimal
optima = np.append(optima, fm((optima[0], optima[1])))
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
# Function
surf = ax.plot_surface(
X, Y, Z,
rstride=2,
cstride=2,
cmap='coolwarm',
linewidth=0.5,
antialiased=True
)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
# Brute computation tack
ax.plot(np.array(OX), np.array(OY), np.array(OZ), ls="--", color='k', linewidth=0.5)
# Optima
ax.plot(
[optima[0]], [optima[1]], [optima[2]],
color='r', marker='X', markersize=15
)
fig.colorbar(surf, shrink=0.5, aspect=5)
SHGO
scipy.optimize.shgo seems to work, too.
Finds the global minimum of a function using SHG optimization.
optima = sco.shgo(
fo,
[(-10, 10), (-10, 10)]
)
# Optimal
optima['x'] = np.append(optima['x'], fm((optima['x'][0], optima['x'][1])))
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
# Function
surf = ax.plot_surface(
X, Y, Z,
rstride=2,
cstride=2,
cmap='coolwarm',
linewidth=0.5,
antialiased=True
)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
# Optima
ax.plot(
[optima['x'][0]], [optima['x'][1]], [optima['x'][2]],
color='r', marker='X', markersize=15
)
fig.colorbar(surf, shrink=0.5, aspect=5)
Clarification
Even though it is "global Optimization", are there conditions or limitations to consider to make sure they find the global optimal?
Global Optimization
basinhopping(func, x0[, niter, T, stepsize, …])
Find the global minimum of a function using the basin-hopping algorithm
brute(func, ranges[, args, Ns, full_output, …])
Minimize a function over a given range by brute force.
differential_evolution(func, bounds[, args, …])
Finds the global minimum of a multivariate function.
shgo(func, bounds[, args, constraints, n, …])
Finds the global minimum of a function using SHG optimization.
dual_annealing(func, bounds[, args, …])
Find the global minimum of a function using Dual Annealing.
References
Topic scipy optimization
Category Data Science