How to specify Search Space in Auto-Sklearn

I know how to specify Feature Selection methods and the list of the Algorithms used in Auto-Sklearn 2.0

mdl = autosklearn.classification.AutoSklearn2Classifier(
    include = {
         'classifier': [random_forest, gaussian_nb, libsvm_svc, adaboost],
         'feature_preprocessor': [no_preprocessing]
    },
    exclude=None)

I know that Auto-Sklearn use Bayesian Optimisation SMAC

but I would like to specify the HyperParameters in AutoSklearn

For example, I want to specify random_forst with Estimator = 1000 only or MLP with HiddenLayerSize = 100 only.

any idea how to do that?

Topic automl hyperparameter-tuning hyperparameter scikit-learn python

Category Data Science

About

Geeks Mental is a community that publishes articles and tutorials about Web, Android, Data Science, new techniques and Linux security.