How to specify Search Space in Auto-Sklearn
I know how to specify Feature Selection methods and the list of the Algorithms used in Auto-Sklearn 2.0
mdl = autosklearn.classification.AutoSklearn2Classifier(
include = {
'classifier': [random_forest, gaussian_nb, libsvm_svc, adaboost],
'feature_preprocessor': [no_preprocessing]
},
exclude=None)
I know that Auto-Sklearn use Bayesian Optimisation SMAC
but I would like to specify the HyperParameters in AutoSklearn
For example, I want to specify random_forst with Estimator = 1000 only or MLP with HiddenLayerSize = 100 only.
any idea how to do that?
Topic automl hyperparameter-tuning hyperparameter scikit-learn python
Category Data Science