How to suppress "Estimator fit failed. The score on this train-test" warning message?
I am working on hyper-tuning random forest classifier with following parameters in random search CV
In [100]: # defining model
Model = RandomForestClassifier(random state=1)
# Parameter grid to pass in RandomSearchCV
param grid =
{ n_estimators: [200,250,300], min_samples_leaf: np.arange(1, 4), max_features: [np.arange(0.3, 0.6, 0.1),'sqrt'],max_samples: np.arange(0.4, 0.7, 0.1)}
#Calling RandomizedSearchcV
randomized_cv = RandomizedSearchCV(estimator=Model, param distributions=param grid, n_iter=10, n_jobs = -1, scoring=metrics.make_scorer(metrics.recall_score))
#Fitting parameters in RandomizedSearchcv
randomized cv.fit(X train, y train)
print (Best parameters are {} with CV score={}: .format (randomized_cv.best params_,randomized_cv.best_score_))
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site- packages/joblib/parallel.py, line 262, in
call
return [func(*args, **kwargs)
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site- packages/joblib/parallel.py, line 262, in listcomp
return [func(*args, **kwargs)
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site- packages/sklearn/utils/fixes.py, line 222, in
call
return self. function(*args, **kwargs)
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site- packages/sklearn/ensemble/_forest.py, line 169, in parall
el build trees
tree.fit(X, y, sample weight=curr sample weight, check input=False)
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site-packages/sklearn/tree/classes.py,line 903, in fit
super@).fitl
File /Users/thiyaga/opt/anaconda3/lib/python3.9/site-packages/sklearn/tree/_classes.py,line 273, in fit
if self.max features 0.0:
ValueError: The truth value of an arrav with more than one element is ambiguous. Use a.an() or a.all()
warnings.warn (Estimator fit failed. The score on this train-test
output is
Best parameters are
{'n estimators': 250,
'min samples leaf': 1,
'max samples': 0.6,
'max features':'sqrt'}
with CV score=0.6996248466921577; along with this warning message. To avoid warning message imported
import warnings
warnings.filterwarnings(ignore)
from sklearn.exceptions import FitFailedWarning
still warning message appears.