How to train models using Google ML ( keras & tenserflow)
Do I need to change my existing code I used to train neural network from my PC. here is my current code.
Model = Sequential()
Model.add(Convolution2D(32,3,3, input_shape=(128,128,3),activation="relu"))
Model.add(MaxPooling2D(pool_size=(2,2)))
Model.add(Convolution2D(32,3,3,activation="relu"))
Model.add(MaxPooling2D(pool_size=(2,2)))
Model.add(Flatten())
Model.add(Dense(output_dim =128, activation= 'relu'))
Model.add(Dense(output_dim =1, activation= 'sigmoid'))
Model.compile(optimizer="adam", loss = 'binary_crossentropy', metrics= ["accuracy"])
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
traning_set = train_datagen.flow_from_directory(
'data/train_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'data/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(
traning_set,
steps_per_epoch=204,
epochs=20,
validation_data=test_set,
validation_steps=101)
classifier.save('mymodel.h5')
Topic google-prediction-api keras tensorflow
Category Data Science