How to write custom de-identification algorithm in Python?
I have tried a simple algorithm to anonymize my data using the de-identification technique. But the code doesn't work for me. I want to anonymize the data by slightly changing the values. The data sample is available here
import pandas as pd 
import uuid as u 
import datetime as dt 
# generate a pseudo-identifier sequesnce using python random number generator library uudi.
 def uudi_generator(length): 
    uudi_list= list() 
    i=0 
    while i  length: 
        uudi_list.append(u.uuid4()) 
    i+=1 
    return uudi_list 
#import original originaL dataset 
dataset = pd.read_csv('bankcredit-data.csv') 
# pseudo identifier
sLength = len(dataset['housing']) 
dataset.insert(0, 'uuid', pd.Series(uudi_generator(sLength), index=dataset.index)) 
# Transaction record attached to the original
dataset.insert(0, 'transaction_date', pd.Series([dt.datetime.now]*sLength, index=dataset.index)) 
 #transcation record is attached to originaL data file 
dataset.to_csv('bankcredit-data.csv') 
#delete identifiabLe record from dataset 
del dataset['firstnamme'] 
del dataset['lastname'] 
# export  de-identified dataset as csv to be shared with the user
dataset.to_csv('deidentified-data.csv')
Topic privacy implementation anonymization dataset python
Category Data Science