Interpretation of Log Odds in Logistic Regression
$\log(\text{odds}) = \text{logit}(P)=ln \big({{P}\over{1-P}}\big)$
$ln\big({{P}\over{1-P}}\big)=\beta_0+\beta_1x$
Consider this example: $0.7=\beta_o+\beta_1(x)+\beta_2(y)+\beta_3(z)$
How can this expression be interpreted?
Topic logarithmic logistic-regression
Category Data Science