Issues related to the code for ROI pooling from the feature map

I am trying to do ROI pooling on the feature map obtained from the VGG layers but I don't know how to code this layers. Can anybody help me out?

Here is my VGG layers:

model=Sequential() model.add(ZeroPadding2D((1,1),input_shape=(3,112,112))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(BatchNormalization(momentum=0.99)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(BatchNormalization(momentum=0.99)) model.add(MaxPooling2D((2,2), strides=(2,2), dim_ordering="th"))

model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(BatchNormalization(momentum=0.99))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(BatchNormalization(momentum=0.99))
model.add(MaxPooling2D((2,2), strides=(2,2), dim_ordering="th"))

model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))

` The corresponding model is described in the picture below:

Topic object-detection generative-models gan keras neural-network

Category Data Science


About

Geeks Mental is a community that publishes articles and tutorials about Web, Android, Data Science, new techniques and Linux security.