MLP sequential fitting
I am fitting a Keras model, using SGD
Input dataset X_train has 55000 entries.
Can anyone explain the yellow highlighted values? For me, when each epoch is done, this should correspond to 55000/55000.
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28,28]))
model.add(keras.layers.Dense(300, activation=relu))
model.add(keras.layers.Dense(100, activation=relu))
model.add(keras.layers.Dense(10, activation=softmax))
model.compile(loss=sparse_categorical_crossentropy, optimizer=sgd,metrics=[accuracy])
history = model.fit(X_train , y_train, epochs=30 , validation_data=(X_valid, y_valid))
Topic ann keras deep-learning
Category Data Science