Naive Bayes Predict type = 'raw' returning NA
I have build a naive bayes model for text classification.It is predicting correctly.But it is returning 'NA' in prediction results if i put 'type = raw'.i have seen some results in stackoverflow to add some noise.when i do that i am getting all A category as 0's and all B category as 1's.How can i get correct probabilities in naive bayes?
library('tm');
library('e1071');
library('SparseM');
Sample_data - read.csv("products.csv");
traindata - as.data.frame(Sample_data[1:60,c(1,2)]);
testdata - as.data.frame(Sample_data[61:80,c(1,2)]);
trainvector - as.vector(traindata$Description);
testvector - as.vector(testdata$Description);
trainsource - VectorSource(trainvector);
testsource - VectorSource(testvector);
traincorpus - Corpus(trainsource);
testcorpus - Corpus(testsource);
traincorpus - tm_map(traincorpus,stripWhitespace);
traincorpus - tm_map(traincorpus,tolower);
traincorpus - tm_map(traincorpus, removeWords,stopwords("english"));
traincorpus- tm_map(traincorpus,removePunctuation);
testcorpus - tm_map(testcorpus,stripWhitespace);
testcorpus - tm_map(testcorpus,tolower);
testcorpus - tm_map(testcorpus, removeWords,stopwords("english"));
testcorpus- tm_map(testcorpus,removePunctuation);
trainmatrix - t(TermDocumentMatrix(traincorpus));
testmatrix - t(TermDocumentMatrix(testcorpus));
model - naiveBayes(as.matrix(trainmatrix),as.factor(traindata$Group));
results - predict(model,as.matrix(testmatrix))
Topic naive-bayes-classifier r machine-learning
Category Data Science