Prove GDA decision boundary is linear
My attempt:
(a) I solved that $a=\ln{\frac{P(X|C_0)P(C_0)}{P(X|C_1)P(C_1)}}$
(b) Here is where I'm running into trouble. I'm plugging the distributions into $\ln{\frac{P(X|C_0)P(C_0)}{P(X|C_1)P(C_1)}}$ and I get $a=\ln{\frac{P(C_0)}{P(C_1)}}+\frac{1}{2}(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)-\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)$.
I can see that $b=\ln{\frac{P(C_0)}{P(C_1)}}$ and $w^Tx=\frac{1}{2}(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)-\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)$.
I'm not sure how to simplify $w^Tx$ so that I can solve for $w$. Or is there something that I did wrong?
Topic gaussian discriminant-analysis machine-learning
Category Data Science