save reconstructed data points from variational autoencoder as original MNIST
I have a VAE implementation that generates images from the latent distribution. I want to save those images as we have in the original dataset. For example, my VAE generates a data point, using following code:
data_point = decoder.predict(sample_2).reshape(28,28,1)
plt.figure(figsize=(4, 4))
plt.imshow(data_point, cmap = plt.cm.gray), plt.axis('off')
plt.show()
and I can see it as image (number 4 from MNIST).
If I look at the value of data_point, it's something like this:
array([[[4.03011961e-13], [2.21622661e-13], [1.77334818e-13], [7.62046296e-13], [2.77884297e-13], [2.07368519e-13], [8.03054997e-13], [2.32846815e-12], [3.30792956e-13], [5.10265875e-13], [4.53714377e-13], [7.72020902e-13], [2.40072452e-15], [5.33155790e-18], [1.82554410e-17], [1.94275460e-14], [7.08261032e-13], [1.93895017e-13], [1.41169140e-13], [2.54418963e-13], [1.84164587e-13], [5.63674216e-13], [2.41039881e-13], [1.09983593e-12], [3.10923162e-13], [6.10170389e-13], [2.82728566e-13], [8.62359446e-13]],
[[4.44639280e-13],
[5.38853630e-13],
[8.75662336e-13],
[4.20943906e-13],
[9.27767195e-13],
[4.10378681e-13],
[7.86754383e-19],
[1.11494106e-10],
[1.92631802e-20],
[1.18347889e-20],
[2.04603952e-19],
[4.51171045e-10],
[5.84537618e-09],
[1.74478237e-10],
[2.97197201e-15],
[4.02961132e-06],
[1.78260489e-05],
[5.26130589e-06],
[2.67937764e-07],
[1.60848384e-08],
[3.89209082e-10],
[6.99526808e-12],
[2.21762712e-12],
[2.05981635e-10],
[2.73873182e-13],
[4.28192231e-13],
[3.43138034e-13],
[1.25222884e-13]],
[[8.58389287e-14],
[8.10255454e-13],
[4.95586775e-12],
[3.97011979e-10],
[1.28769051e-10],
[2.72773991e-11],
[3.21341781e-12],
[1.62263554e-13],
[3.22682298e-10],
[3.03946910e-15],
[1.49391992e-11],
[1.32825903e-07],
[2.96872404e-05],
[5.68593459e-05],
[2.46729321e-08],
[3.44368146e-07],
[1.37180090e-04],
[3.21626663e-04],
[1.97797476e-06],
[1.50809399e-06],
[6.69565623e-07],
[3.97693523e-09],
[2.83441742e-10],
[2.90388291e-09],
[2.94366503e-10],
[4.99329154e-11],
[6.35633581e-13],
[3.84580172e-13]],
[[3.44142819e-13],
[5.32755589e-13],
[1.76354229e-06],
[8.60144027e-08],
[7.89879440e-10],
[2.81121881e-09],
[5.90421156e-10],
[3.66920005e-09],
[3.40137589e-08],
[2.52995136e-07],
[8.87955048e-06],
[4.06019353e-06],
[1.03280299e-05],
[6.74848052e-05],
[4.36633825e-04],
[2.40772963e-03],
[4.38001752e-03],
[9.76756215e-03],
[1.50219202e-02],
[1.24094486e-02],
[1.61097050e-02],
[1.55800581e-02],
[1.80470943e-03],
[3.15964222e-04],
[4.58793784e-06],
[2.39043860e-08],
[6.29129387e-11],
[2.89857033e-13]],
[[3.29843493e-13],
[8.62641122e-12],
[6.53914242e-07],
[1.47626849e-06],
[5.40177609e-07],
[1.27491103e-05],
[7.43750036e-07],
[2.37378686e-06],
[2.98881537e-06],
[2.36163191e-06],
[2.98031482e-05],
[1.57475471e-04],
[4.97281551e-04],
[1.50054693e-03],
[3.28829885e-03],
[7.02655315e-03],
[1.68763697e-02],
[4.35097516e-02],
[1.39326066e-01],
[1.43647820e-01],
[1.01858199e-01],
[2.44558156e-02],
[2.71978974e-03],
[1.93685293e-04],
[7.58583483e-05],
[2.83041609e-05],
[4.32333735e-07],
[3.18222639e-08]],
[[7.55973246e-13],
[2.89698387e-13],
[3.21431948e-08],
[5.69485564e-07],
[5.53189778e-08],
[6.75531226e-07],
[1.75821642e-05],
[9.35508724e-05],
[2.64495611e-04],
[4.41849232e-04],
[2.95582414e-03],
[9.30529833e-03],
[2.24899352e-02],
[4.59767580e-02],
[6.01184070e-02],
[7.92075992e-02],
[9.29762125e-02],
[1.49210542e-01],
[3.04096997e-01],
[3.44663680e-01],
[1.54367417e-01],
[1.59352124e-02],
[9.33706760e-04],
[3.85993444e-05],
[4.94408550e-06],
[8.23735718e-06],
[6.74288344e-07],
[6.47714771e-08]],
[[5.75875881e-13],
[3.19633315e-08],
[1.06336032e-07],
[1.01164999e-09],
[2.82172408e-07],
[4.48018000e-06],
[3.02894896e-05],
[2.09450722e-04],
[1.04960799e-03],
[1.80462003e-03],
[1.05324984e-02],
[4.29492593e-02],
[8.82365406e-02],
[1.11809522e-01],
[1.01727396e-01],
[9.13816988e-02],
[1.63288981e-01],
[3.38907957e-01],
[4.89805281e-01],
[4.13359702e-01],
[1.06642336e-01],
[6.36953115e-03],
[2.37375498e-04],
[1.03281582e-05],
[7.21318429e-07],
[9.70824630e-08],
[7.89464565e-08],
[5.90492448e-07]],
[[4.90616825e-13],
[1.70718806e-07],
[2.18375149e-07],
[8.25395716e-08],
[3.56286620e-07],
[1.26382720e-05],
[3.23710119e-05],
[2.30252743e-04],
[1.19996071e-03],
[6.61209226e-03],
[2.88651586e-02],
[9.38189924e-02],
[1.48812383e-01],
[1.60851657e-01],
[1.24631613e-01],
[1.15020007e-01],
[2.25059330e-01],
[5.11034429e-01],
[6.53785408e-01],
[3.95386457e-01],
[4.05333340e-02],
[1.37898326e-03],
[3.34105862e-05],
[1.73295882e-06],
[9.42586524e-08],
[5.49838086e-09],
[2.30527739e-08],
[7.59570810e-07]],
[[4.74423523e-08],
[2.57551722e-08],
[1.70223178e-08],
[9.46528871e-07],
[8.87699684e-07],
[1.17506779e-05],
[8.36460822e-05],
[6.12527132e-04],
[2.88000703e-03],
[1.89722180e-02],
[5.96913099e-02],
[1.83599472e-01],
[2.99093246e-01],
[2.83028722e-01],
[1.72213584e-01],
[1.42149121e-01],
[2.93498605e-01],
[6.65288985e-01],
[7.34543920e-01],
[2.76508272e-01],
[1.17376149e-02],
[1.75029039e-04],
[1.59542026e-06],
[1.36414656e-07],
[3.23070415e-09],
[3.14875215e-09],
[3.02260883e-09],
[2.83562613e-08]],
[[1.30726407e-08],
[8.44085122e-08],
[3.92977073e-09],
[7.10467907e-09],
[1.31079832e-06],
[2.39011861e-05],
[8.19534689e-05],
[1.26442313e-03],
[8.39897990e-03],
[4.14707363e-02],
[1.38053656e-01],
[3.39567870e-01],
[4.86506969e-01],
[3.88590217e-01],
[2.13033736e-01],
[1.79445624e-01],
[4.25713390e-01],
[7.52691150e-01],
[6.67776287e-01],
[1.16757631e-01],
[1.33305788e-03],
[7.63646676e-06],
[2.29895122e-07],
[7.60058114e-08],
[1.52386534e-10],
[5.02801467e-10],
[6.94510494e-09],
[3.51710483e-09]],
[[1.59522688e-08],
[1.22964536e-08],
[6.98260237e-07],
[4.30839464e-06],
[4.82828045e-06],
[5.71400560e-05],
[2.41637230e-04],
[2.38153338e-03],
[1.78048015e-02],
[9.85664725e-02],
[2.99791962e-01],
[5.17415524e-01],
[5.44012189e-01],
[3.18015277e-01],
[1.90434307e-01],
[2.52300292e-01],
[6.70448005e-01],
[8.26084375e-01],
[4.38459426e-01],
[2.10762322e-02],
[1.43229961e-04],
[2.40939858e-06],
[3.82827807e-07],
[2.48383969e-07],
[7.50810347e-09],
[1.64965599e-07],
[1.87119383e-07],
[1.02827084e-06]],
[[5.87612181e-11],
[4.86003842e-07],
[1.34140253e-04],
[8.29817236e-06],
[6.90478464e-06],
[6.33757372e-05],
[9.35763121e-04],
[3.57568264e-03],
[3.65356505e-02],
[2.08787590e-01],
[5.10441363e-01],
[6.61245465e-01],
[5.33417583e-01],
[2.77707100e-01],
[1.52661115e-01],
[4.15187120e-01],
[8.23491156e-01],
[7.84586906e-01],
[1.77486032e-01],
[3.99112701e-03],
[1.52260065e-04],
[1.43200159e-04],
[8.11517239e-04],
[8.97794962e-04],
[9.61855621e-05],
[7.96061795e-06],
[2.98488158e-06],
[4.37723315e-07]],
[[1.12513733e-14],
[1.16111964e-09],
[2.21163034e-04],
[2.93206608e-06],
[1.54858196e-06],
[1.10811576e-04],
[1.14396214e-03],
[6.85134530e-03],
[5.84453642e-02],
[3.17431867e-01],
[6.75466239e-01],
[6.70605838e-01],
[4.31881249e-01],
[2.04789281e-01],
[2.08864897e-01],
[6.58993900e-01],
[9.03000355e-01],
[6.22636974e-01],
[6.77961409e-02],
[9.55802202e-03],
[2.00228095e-02],
[2.79975533e-02],
[1.69789791e-02],
[1.42948925e-02],
[1.09267533e-02],
[2.68042088e-03],
[7.15464354e-04],
[2.42101066e-07]],
[[2.16119442e-10],
[9.93973615e-09],
[2.48828123e-08],
[8.52816072e-07],
[4.90268758e-06],
[6.65307045e-04],
[1.70147419e-03],
[9.94557142e-03],
[8.30751956e-02],
[4.33210492e-01],
[7.61610866e-01],
[6.61763549e-01],
[4.07969803e-01],
[2.57176578e-01],
[4.58650053e-01],
[8.25237453e-01],
[9.01254177e-01],
[4.17191923e-01],
[1.01019263e-01],
[1.27570271e-01],
[1.39851034e-01],
[6.99148178e-02],
[2.37748027e-02],
[1.96982324e-02],
[1.28533840e-02],
[1.60163641e-03],
[3.26097012e-04],
[6.43924705e-11]],
[[2.63612725e-11],
[4.50835072e-12],
[3.19371959e-11],
[3.05448005e-08],
[2.28911638e-04],
[1.26433372e-03],
[4.13265824e-03],
[1.93419456e-02],
[1.42780960e-01],
[5.08294344e-01],
[7.07057953e-01],
[6.37161255e-01],
[5.18982649e-01],
[5.20428061e-01],
[7.47704029e-01],
[9.24637198e-01],
[8.60066175e-01],
[3.86388838e-01],
[3.10472190e-01],
[3.40534359e-01],
[2.07732052e-01],
[1.18576288e-01],
[5.48661947e-02],
[2.53345072e-02],
[9.83983278e-03],
[2.64650583e-03],
[4.04510320e-05],
[7.34955919e-15]],
[[1.13976911e-10],
[1.48831360e-12],
[8.55717407e-12],
[3.25459368e-05],
[1.11305714e-03],
[1.98072195e-03],
[7.57884979e-03],
[2.78027654e-02],
[1.38588756e-01],
[3.97499084e-01],
[5.61626375e-01],
[5.46481431e-01],
[5.82895756e-01],
[6.77130818e-01],
[8.65123153e-01],
[9.37654853e-01],
[6.96576595e-01],
[3.34867656e-01],
[3.57725799e-01],
[2.90496171e-01],
[1.53350472e-01],
[9.07979310e-02],
[3.91798019e-02],
[9.56612825e-03],
[5.75134158e-03],
[4.82636690e-03],
[3.14921141e-04],
[7.35473488e-11]],
[[8.16259495e-14],
[8.39126102e-09],
[7.78030765e-11],
[3.65525848e-05],
[1.31666660e-03],
[2.82055140e-03],
[9.36779380e-03],
[2.89015174e-02],
[1.14511102e-01],
[2.61149466e-01],
[3.28592241e-01],
[3.95936936e-01],
[4.76876527e-01],
[6.79843366e-01],
[8.76514316e-01],
[8.69823813e-01],
[4.22013760e-01],
[2.67814875e-01],
[2.36494809e-01],
[1.89069867e-01],
[7.52410889e-02],
[4.87635136e-02],
[2.47938633e-02],
[8.40789080e-03],
[5.10838628e-03],
[3.92773747e-03],
[1.55091286e-04],
[3.10936571e-07]],
[[2.24828646e-13],
[3.84801275e-08],
[6.86807269e-08],
[6.94072951e-05],
[3.76075506e-04],
[1.95753574e-03],
[1.35631263e-02],
[3.01537812e-02],
[7.18578398e-02],
[1.35273635e-01],
[1.92457885e-01],
[2.25227445e-01],
[3.34085882e-01],
[6.60659730e-01],
[8.79350603e-01],
[6.54569387e-01],
[1.20185852e-01],
[7.02365935e-02],
[8.99654627e-02],
[6.71912432e-02],
[2.48302221e-02],
[1.98727548e-02],
[1.15211904e-02],
[4.27532196e-03],
[1.96439028e-03],
[2.25752592e-04],
[2.76649025e-05],
[8.29508963e-07]],
[[2.22100043e-05],
[1.81073356e-09],
[2.30877595e-06],
[5.00448150e-05],
[1.17690652e-04],
[3.03027034e-03],
[1.01063550e-02],
[2.10689306e-02],
[4.86928821e-02],
[7.92061090e-02],
[1.18575424e-01],
[1.38978869e-01],
[3.03999782e-01],
[7.69077659e-01],
[8.34816217e-01],
[2.78751791e-01],
[1.38193369e-02],
[4.44129109e-03],
[1.02879107e-02],
[9.79220867e-03],
[5.98782301e-03],
[6.63447380e-03],
[3.31351161e-03],
[1.10885501e-03],
[6.48945570e-04],
[1.77562237e-04],
[7.09221058e-05],
[7.08127113e-10]],
[[2.85697244e-08],
[2.47358639e-06],
[3.56549378e-07],
[8.29178043e-06],
[2.83046465e-05],
[9.77307558e-04],
[2.88158655e-03],
[8.80235434e-03],
[1.74328983e-02],
[2.04431415e-02],
[3.20515037e-02],
[9.49429572e-02],
[4.59940135e-01],
[8.76537025e-01],
[6.73069060e-01],
[5.42958081e-02],
[1.26865506e-03],
[1.71303749e-04],
[3.32623720e-04],
[5.92797995e-04],
[8.82923603e-04],
[7.24881887e-04],
[6.18457794e-04],
[2.74062157e-04],
[1.27375126e-04],
[5.88527037e-05],
[1.92406605e-06],
[3.90141114e-10]],
[[6.26579192e-13],
[1.36241033e-06],
[7.37507264e-08],
[3.13518598e-08],
[1.05192998e-06],
[1.90943480e-04],
[8.23438168e-04],
[4.37852740e-03],
[9.32896137e-03],
[1.18295550e-02],
[2.56326497e-02],
[1.38180465e-01],
[6.52658880e-01],
[8.68011832e-01],
[4.03097153e-01],
[1.00840330e-02],
[1.54346228e-04],
[3.32122581e-05],
[1.23103655e-05],
[1.25134229e-05],
[5.91620992e-05],
[1.98304653e-04],
[2.72214413e-04],
[5.37596206e-05],
[5.07831901e-05],
[6.44079628e-05],
[1.25963311e-06],
[2.74487974e-07]],
[[1.87532592e-07],
[5.92385030e-10],
[7.42742756e-09],
[7.03321679e-10],
[5.34399547e-08],
[1.63127534e-05],
[4.15887916e-05],
[1.16437674e-03],
[4.56857681e-03],
[7.18700886e-03],
[2.92323828e-02],
[2.50107288e-01],
[7.70440102e-01],
[8.14685643e-01],
[1.61809772e-01],
[3.12986970e-03],
[6.80270023e-05],
[9.85010502e-06],
[1.48228537e-06],
[2.25920462e-06],
[1.19354903e-04],
[3.24964523e-04],
[6.95735216e-04],
[3.10093164e-04],
[3.57478857e-04],
[1.99637907e-05],
[1.60939078e-06],
[1.26994760e-11]],
[[1.83689110e-07],
[3.55634668e-08],
[1.63951075e-08],
[6.15501738e-09],
[3.22503553e-08],
[2.89935628e-07],
[1.06331181e-05],
[1.49846077e-04],
[1.03950500e-03],
[6.18353486e-03],
[6.36584461e-02],
[4.14639354e-01],
[8.18433166e-01],
[6.01227880e-01],
[6.16790354e-02],
[1.56480074e-03],
[5.07930235e-05],
[1.15432304e-05],
[2.48707397e-06],
[4.52880595e-05],
[2.78711319e-04],
[6.45130873e-04],
[1.00794435e-03],
[4.89354134e-04],
[4.72984539e-05],
[2.55631930e-05],
[1.26299219e-05],
[4.78460110e-12]],
[[1.62727525e-13],
[3.07907454e-13],
[1.97031209e-08],
[8.28106437e-08],
[5.93848037e-09],
[2.76221130e-07],
[6.71411999e-06],
[5.72252902e-05],
[4.13268805e-04],
[5.68196177e-03],
[1.24897212e-01],
[5.71927965e-01],
[7.39980578e-01],
[3.43106478e-01],
[2.75871158e-02],
[6.61909580e-04],
[6.47628622e-05],
[2.21801802e-05],
[4.24837617e-06],
[7.96741951e-05],
[4.77910042e-04],
[5.99175692e-04],
[4.80949879e-04],
[4.35739756e-04],
[3.52054985e-06],
[1.07461938e-05],
[2.18284481e-06],
[7.90135915e-13]],
[[6.31268312e-13],
[8.53969185e-13],
[5.02901670e-12],
[1.56773581e-08],
[4.24895719e-09],
[1.86548320e-07],
[2.80187146e-06],
[1.62192591e-05],
[1.18753494e-04],
[3.26094031e-03],
[6.95448220e-02],
[3.98907334e-01],
[4.35871035e-01],
[1.20268643e-01],
[8.15853477e-03],
[2.54958868e-04],
[4.01461148e-05],
[8.67718154e-06],
[1.88594629e-06],
[1.25408173e-04],
[1.62422657e-04],
[6.56574965e-04],
[1.47578120e-03],
[1.19525194e-03],
[1.37493498e-05],
[3.97423207e-07],
[1.50621567e-13],
[6.01657721e-13]],
[[5.47818681e-13],
[4.06737984e-13],
[5.06858574e-12],
[7.82183929e-10],
[1.33107790e-07],
[8.69633880e-07],
[3.06011316e-06],
[3.56081614e-06],
[1.64449611e-05],
[1.22860074e-03],
[1.81567967e-02],
[7.14378655e-02],
[8.73023272e-02],
[8.76176357e-03],
[1.60518289e-03],
[1.44869089e-04],
[4.97572801e-05],
[1.44769074e-05],
[2.62667822e-06],
[1.58390394e-05],
[3.27445014e-05],
[6.85572086e-05],
[1.18397285e-04],
[1.65432692e-04],
[3.23584146e-07],
[2.29421327e-13],
[9.18547674e-17],
[2.25949055e-12]],
[[4.19665225e-13],
[5.77227393e-13],
[3.89436449e-13],
[6.01447156e-11],
[3.52602481e-09],
[3.14235038e-09],
[9.92575906e-08],
[1.25433999e-07],
[4.76664645e-05],
[2.43425369e-04],
[1.07768178e-03],
[1.33839250e-03],
[3.79085541e-04],
[1.27762556e-04],
[1.91420404e-05],
[6.56663303e-07],
[2.47637710e-09],
[2.70502376e-09],
[6.66084418e-07],
[1.34873218e-07],
[9.96328467e-14],
[2.59377231e-08],
[3.72413774e-06],
[1.64436199e-06],
[1.21434790e-13],
[8.41317120e-12],
[3.84861956e-13],
[2.06545176e-12]],
[[1.29552564e-12],
[5.32095526e-13],
[3.19928302e-13],
[1.81486878e-13],
[7.28031865e-14],
[7.96260416e-16],
[5.42965239e-12],
[5.84719599e-12],
[2.47295517e-09],
[2.95847440e-06],
[9.11877578e-06],
[4.13801581e-06],
[5.76981506e-07],
[1.83962769e-07],
[1.21210476e-07],
[6.95683455e-10],
[1.54933206e-12],
[4.41389547e-09],
[1.11291638e-06],
[1.53838868e-17],
[2.04501836e-18],
[3.61560969e-20],
[3.13697181e-21],
[1.09809802e-20],
[8.03640303e-13],
[1.72586067e-13],
[6.61148491e-13],
[3.39293697e-13]]], dtype=float32)
How do I transform it back to 28,28,1 shape?
Topic vae mnist data-augmentation tensorflow
Category Data Science