Select the right distribution
I have a dataset like:
dframe - structure(list(ind1 = c(1L, 2L, 1L, 1L, 3L, 1L, 1L, 2L), ind2 = c(0L,
0L, 4L, 3L, 0L, 1L, 0L, 2L), ind3 = c(1L, 1L, 1L, 1L, 0L, 0L,
1L, 1L), ind4 = c(1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L), ind5 = c(0L,
1L, 0L, 0L, 3L, 0L, 0L, 0L), ind6 = c(0L, 0L, 0L, 0L, 4L, 0L,
0L, 0L), ind7 = c(1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L), d1 = c(3L,
3L, 0L, 5L, 3L, 3L, 5L, 5L), d2 = c(3L, 2L, 0L, 5L, 5L, 3L, 5L,
4L), d3 = c(3L, 2L, 0L, 1L, 5L, 3L, 5L, 4L), sex = c(1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L)), row.names = c(NA, -8L), class = c("data.table",
"data.frame"), .internal.selfref = pointer: 0x0000000002661ef0)
ind1 ind2 ind3 ind4 ind5 ind6 ind7 d1 d2 d3 sex 1: 1 0 1 1 0 0 1 3 3 3 1 2: 2 0 1 0 1 0 1 3 2 2 1 3: 1 4 1 0 0 0 1 0 0 0 2 4: 1 3 1 0 0 0 2 5 5 1 1 5: 3 0 0 0 3 4 1 3 5 5 1 6: 1 1 0 2 0 0 1 3 3 3 2 7: 1 0 1 0 0 0 1 5 5 5 1 8: 2 2 1 0 0 0 1 5 4 4 1
I would like to use the gml model to find correlations between dependent variables d1,d2 and d3 and independent variables ind1, ind2, ind3, ind4, ind5, ind6, ind7 and sex
m1 - glm(d1 ~ etiology + local1 + local2 + local3 + local4 + local5 + handedness, data = data,poisson)
Is poisson distribution the right option?
Topic multivariate-distribution distribution correlation glm r
Category Data Science