Temperature lag forecasting
I am working on a data science project on an industrial machine. This machine has two heating infrastructures. (fuel and electricity). It uses these two heatings at the same time, and I am trying to estimate the temperature value that occurs in the thermocouple as a result of this heating. However, this heating process takes place with some delay/lag. In other words, the one-unit change I have made in fuel and electrical heating is reflected in the thermocouple hours later. I want to find these hours, i.e. I'm trying to calculate the temperature change delay time on the thermocouple for the change in fuel and electricity. These three data are non-stationary time series data. I have data in frequency per second. I thought of using cross correlation but having two different heat sources confuses me. Which method do you think is better to use? Also, should I keep them in units like kwh/m3 or convert them to heat calorie units?
Topic linear-models machine-learning-model correlation time-series
Category Data Science