TSNE parameters

Trying to tune the parameters of

sklearn.manifold.TSNE(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', init='random', verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None, square_distances='legacy')

even I tried a number of combinations, the visual is not showing a clear seperation between two classes. Is there a way to tune tsne automatically or manually to find the best parameters?

Topic tsne classification visualization dimensionality-reduction

Category Data Science

About

Geeks Mental is a community that publishes articles and tutorials about Web, Android, Data Science, new techniques and Linux security.