Unable to figure out nInputPlane in SpatialConvolution in torch?
Documentaion for Spatial Convolution define it as
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
nInputPlane: The number of expected input planes in the image given into forward().
nOutputPlane: The number of output planes the convolution layer will produce.
I don't have any experience with torch but i guess i have used a similar function in keras
Convolution2D(64, 3, 3, border_mode='same', input_shape=(3, 256, 256))
which takes as input the shape of the image that is 256*256 in rgb.
I have read usage of Spatial Convolution in torch as below but unable to figure out what does the nInputPlane and nOutputPlane paramter correspond to?
local convLayer = nn.SpatialConvolutionMM(384, 384, 1, 1, 1, 1, 0, 0)
In the code above what does these 384,384 represent ?
Topic torch convolutional-neural-network
Category Data Science