While using reindex method on any dataframe why do original values go missing?
This is the original Dataframe:
What I wanted : I wanted to convert this above data-frame into this multi-indexed column data-frame :
I managed to do it by this piece of code :
# tols : original dataframe
cols = pd.MultiIndex.from_product([['A','B'],['Y','X']
['P','Q']])
tols.set_axis(cols, axis = 1, inplace = False)
What I tried : I tried to do this with the reindex
method like this :
cols = pd.MultiIndex.from_product([['A','B'],['Y','X'],
['P','Q']])
tols.reindex(cols, axis = 'columns')
it resulted in an output like this :
My problem :
As you could see in the output above all my original numerical values go missing on employing the reindex
method. In the documentation page it was clearly mentioned :
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one. So i don't understand:
- Where did i particularly err in employing the
reindex
method to lose my original values - How should i have employed the
reindex
method correctly to get my desired output
Topic dataframe pandas data-indexing-techniques python
Category Data Science