Why does the summaryFunction data only returns 10 rows with custom metric (caret trControl)
I was trying to generate my own F1 metric, however I am wondering why I only get 10 rows for my prediction in the data parameter.
Can somebody please clarify were it doesn't return me all predictions and obs made and how the F1_score is able to predict from 10 rows?
Here they code:
set.seed(346)
dat - twoClassSim(200)
## See https://topepo.github.io/caret/model-training-and-tuning.html#metrics
f1 - function(data, lev = NULL, model = NULL) {
print(data)
f1_val - F1_Score(y_pred = data$pred, y_true = data$obs, positive = lev[1])
acc-confusionMatrix(data$pred,data$obs)
c(F1 = f1_val, ACC = acc$overall['Accuracy'])
}
set.seed(35)
mod - train(Class ~ ., data = dat,
method = rpart,
metric = F1,
trControl = trainControl(summaryFunction = f1,
classProbs = TRUE))
mod
The data frame that gets returned:
pred. obs. Class1. Class2. rowIndex
Class2 Class2 0.8014277 0.1985723 54
Class2 Class1 0.4387005 0.5612995 119
Class1 Class1 0.2353023 0.7646977 140
Class2 Class2 0.5893232 0.4106768 172
Class1 Class2 0.6507214 0.3492786 28
Class2 Class1 0.4134056 0.5865944 110
Class2 Class2 0.4729114 0.5270886 40
Class1 Class1 0.6359241 0.3640759 51
Class1 Class2 0.7030223 0.2969777 127
Class1 Class1 0.3007686 0.6992314 72
```
Category Data Science